NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Anisotropic Acoustodynamics in Gigahertz Piezoelectric Ultrasonic Transducers
Published
Author(s)
Jingjie Cheng, Zhaoliang Peng, Penghui Song, Bo Peng, Jason J. Gorman, Justin Kuo, Amit Lal, Wenming Zhang, Lei Shao
Abstract
In this work, we employed our newly developed optical imaging method to probe detailed acoustodynamic physics in gigahertz (GHz) unreleased ultrasonic transducers based on an AlN-on-silicon system, revealing mode superposition, anisotropic transduction, and dynamic mode evolution. Superpositioned upon the dominant breathing mode along the vertical direction of the AlN layer, multiple resonant lateral modes are identified, and they are shown to evolve into a surface mode beyond the piezoelectric transduction envelope, with strong anisotropic transduction brought by the shear motion of silicon. This acoustodynamic property is important for verifying and further improving design theories of broadband piezoelectric transducers and thin film piezoelectric-on-substrate systems in general.
Cheng, J.
, Peng, Z.
, Song, P.
, Peng, B.
, Gorman, J.
, Kuo, J.
, Lal, A.
, Zhang, W.
and Shao, L.
(2022),
Anisotropic Acoustodynamics in Gigahertz Piezoelectric Ultrasonic Transducers, IEEE Electron Device Letters, [online], https://doi.org/10.1109/LED.2022.3179205 , https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=934855
(Accessed October 10, 2025)