NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Michael G. Huber, Charles W. Clark, Dmitry Pushin, Connor Kapahi, Lisa DeBeer-Schmitt, David Cory, Huseyin Ekinci, Melissa Henderson, Dusan Sarenac
Abstract
Methods of preparation and analysis of structured waves of light, electrons, and atoms have been advancing rapidly. Despite the proven power of neutrons for material characterization and studies of fundamental physics, neutron science has not been able to fully integrate such techniques due to small transverse coherence lengths, the relatively poor resolution of spatial detectors, and low fluence rates. Here, we demonstrate methods that are practical with the existing technologies, and show the experimental achievement of neutron helical wavefronts that carry well-defined orbital angular momentum (OAM) values. We discuss possible applications and extensions to spin-orbit correlations and material characterization techniques.
Huber, M.
, Clark, C.
, Pushin, D.
, Kapahi, C.
, Debeer-Schmitt, L.
, Cory, D.
, Ekinci, H.
, Henderson, M.
and Sarenac, D.
(2022),
Experimental Realization of Neutron Helical Waves, Arxiv, [online], https://arxiv.org/abs/2205.06263)
(Accessed October 11, 2025)