NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Learning Efficient, Collective Monte Carlo Moves with Variational Autoencoders
Published
Author(s)
Jacob Monroe, Vincent K. Shen
Abstract
Discovering meaningful collective variables for enhancing sampling, via applied biasing potentials or tailored MC move sets, remains a major challenge within molecular simulation. While recent studies identifying collective variables with variational autoencoders (VAEs) have focused on the encoding and latent space discovered by a VAE, the impact of the decoding and its ability to act as a generative model remains unexplored. We demonstrate how VAEs may be used to learn (on-the-fly and with minimal human intervention) highly efficient, collective Monte Carlo moves that accelerate sampling along the learned collective variable. In contrast to many machine learning-based efforts to bias sampling and generate novel configurations, our methods result in exact sampling in the ensemble of interest and do not require reweighting. In fact, we show that the acceptance rates of our moves approach unity for a perfect VAE model. While this is never observed in practice, VAE-based Monte Carlo moves still enhance sampling of new configurations. We demonstrate, however, that the form of the encoding and decoding distributions, in particular the extent to which the decoder reflects the underlying physics, greatly impacts the performance of the trained VAE.
Monroe, J.
and Shen, V.
(2022),
Learning Efficient, Collective Monte Carlo Moves with Variational Autoencoders, Journal of Chemical Theory and Computation, [online], https://doi.org/10.1021/acs.jctc.2c00110, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=932532
(Accessed October 8, 2025)