NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Inhibition by Tetrahydroquinoline Sulfonamide Derivatives of the Activity of Human 8-Oxoguanine DNA Glycosylase (OGG1) for Several Products of Oxidatively-induced DNA Base Lesions
Published
Author(s)
Miral M. Dizdar, Melis Kant, Pawel Jaruga, Erdem Coskun, Yu-Ki Tahara, R. S. Lloyd, Eric T. Kool
Abstract
DNA glycosylases involved in the first step of the base excision repair pathway of DNA repair are promising targets in cancer therapy. There is evidence that reduction of their activities may enhance cell killing in malignant tumors. Recently, two tetrahydroquinoline compounds named SU0268 and SU0383 were reported to inhibit OGG1 for the excision of 8-hydroxyguanine. This DNA repair protein is one of the major cellular enzymes responsible for excision of a number of oxidatively-induced lesions from DNA. In this work, we used gas chromatography-tandem mass spectrometry with isotope-dilution to measure the excision of not only 8-hydroxyguanine, but also that of the other major substrate of OGG1, i.e., 2,6-diamino-4-hydroxy-5-formamidopyrimidine, using genomic DNA with multiple purine- and pyrimidine-derived lesions. The excision of a minor substrate 4,6-diamino-5-formamidopyrimidine was also measured. Both SU0268 and SU0383 efficiently inhibited OGG1 activity for these three lesions, with the former being more potent than the latter. Dependence of inhibition on concentrations of SU0268 and SU0383 from 0.05 μmol/L to 10 μmol/L was also demonstrated. The approach used in this work may be applied to the investigation of OGG1 inhibition by SU0268 and SU0383, and other small molecule inhibitors in further studies including cellular and animal models of disease.
Dizdar, M.
, Kant, M.
, Jaruga, P.
, Coskun, E.
, Tahara, Y.
, Lloyd, R.
and Kool, E.
(2021),
Inhibition by Tetrahydroquinoline Sulfonamide Derivatives of the Activity of Human 8-Oxoguanine DNA Glycosylase (OGG1) for Several Products of Oxidatively-induced DNA Base Lesions, ACS Chemical Biology, [online], https://doi.org/10.1021/acschembio.0c00877, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930987
(Accessed October 13, 2025)