NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Competing Antiferromagnetic-Ferromagnetic States in d7 Kitaev Honeycomb Magnet
Published
Author(s)
Hector Vivanco, Benjamin Trump, Craig Brown, Tyrel M. McQueen
Abstract
The Kitaev model is a rare example of an analytically solvable and physically instantiable Hamiltonian yielding a topological quantum spin liquid ground state. Here we report signatures of Kitaev spin liquid physics in the honeycomb magnet Li3Co2SbO6, built of high-spin d7 (Co2+) ions, in contrast to the more typical low-spin d5 electron configurations in the presence of large spin-orbit coupling. Neutron powder diffraction measurements, heat capacity, and magnetization studies support the development of a long-range antiferromagnetic order space group of CC2/m, below TN = 11 K at υ0H = 0 T. The magnetic entropy recovered between T = 2 K and 50 K is estimated to be 0.6Rln2, in good agreement with the value expected for systems close to a Kitaev quantum spin liquid state. The temperature-dependent magnetic order parameter demonstrates a β value of 0.19(3), consistent with XY anisotropy and in-plane ordering, with Ising-like interactions between layers. Further, we observe a spin-flop driven crossover to ferromagnetic order with space group of C2/m under an applied magnetic field of υ0H ≈ 0.7 T at T = 2 K. Magnetic structure analysis demonstrates these magnetic states are competing at finite applied magnetic fields even below the spin-flop transition. Both the d7 compass model, a quantitative comparison of the specific heat of Li3Co2SbO6, and related honeycomb cobaltates to the anisotropic Kitaev model further support proximity to a Kitaev spin liquid state. This material demonstrates the rich playground of high-spin d7 systems for spin liquid candidates, and complements known d5 Ir- and Ru-based materials.
Vivanco, H.
, Trump, B.
, Brown, C.
and McQueen, T.
(2020),
Competing Antiferromagnetic-Ferromagnetic States in d<sup>7</sup> Kitaev Honeycomb Magnet, Physical Review B
(Accessed October 14, 2025)