NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Repulsive, Densely-Packed Ligand-Shells Mediate Interactions between PbS Nanocrystals in Solution
Published
Author(s)
Samuel W. Winslow, Yun Liu, James W. Swan, William A. Tisdale
Abstract
The surface capping ligands on nanocrystals (NCs) impart colloidal stability and determine the organization into ordered solids when cast from solution. Here, we use small-angle neutron scattering (SANS) to measure the solution structure factor in dispersions of fully passivated, oleate-capped PbS NCs up to concentrations of 16 v/v%. Fitting the data by assuming an attractive square well interaction potential between NCs yields a repulsive core size larger than the physical NC core diameter. This repulsive core stems from a densely packed region of the ligand-shell near the NC surface. The spatial extent of the repulsive core increases with temperature as ligand motion increases, becoming repulsive farther out in the ligand-shell, while the portion of ligand-shell outside of the repulsive region remains attractive with a strength 1 kBT. This molecular understanding provides insight into the fundamental inter- particle interactions in colloidal nanocrystal suspensions.
Winslow, S.
, Liu, Y.
, Swan, J.
and Tisdale, W.
(2021),
Repulsive, Densely-Packed Ligand-Shells Mediate Interactions between PbS Nanocrystals in Solution, Journal of Physical Chemistry Letters
(Accessed October 9, 2025)