NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Generating GHZ states with squeezing and post-selection
Published
Author(s)
Byron Alexander, Hermann Uys, John Bollinger
Abstract
Many quantum state preparation methods rely on a combination of dissipative quantum state initialization, followed by unitary evolution to a desired target state. Here we demonstrate the usefulness of quantum measurement as an additional tool for quantum state preparation. Starting from a pure separable multipartite state, a control sequence, which includes rotation, spin squeezing, quantum measurement and post-selection, generates a highly entangled multipartite state, which we refer to as Projected Squeezed states (or PS states). Through an optimization method, we then identify parameters required to maximize the overlap fidelity of the PS states with the maximally entangled Greenberger-Horne-Zeilinger states (or GHZ states). The method leads to an appreciable decrease in state preparation time of GHZ states when compared to preparation through unitary evolution only.
Alexander, B.
, Uys, H.
and Bollinger, J.
(2020),
Generating GHZ states with squeezing and post-selection, Physical Review A, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=929193
(Accessed October 10, 2025)