NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Elliptic curves are typically defined by Weierstrass equations. Given a kernel, the well-known Vélu's formula shows how to explicitly write down an isogeny between Weierstrass curves. However, it is not clear how to do the same on other forms of elliptic curves without isomorphisms mapping to and from the Weierstrass form. Previous papers have shown some isogeny formulas for (twisted) Edwards, Huff, and Montgomery forms of elliptic curves. Continuing this line of work, this paper derives explicit formulas for isogenies between elliptic curves in (twisted) Hessian form. In addition, we examine the numbers of operations in the base field to compute the formulas. In comparison with other isogeny formulas, we note that our formulas for twisted Hessian curves have the lowest costs for processing the kernel and our X-affine formula has the lowest cost for processing an input point in affine coordinates.
Moody, D.
, Dang, T.
, Perez, F.
and Fouotsa, E.
(2021),
Isogenies on twisted Hessian curves, Journal of Mathematical Cryptography, [online], https://doi.org/10.1515/jmc-2020-0037, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=929415
(Accessed October 2, 2025)