NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Color, Structure, and Rheology of a Diblock Bottlebrush Copolymer Solution
Published
Author(s)
Matthew A. Wade, Dylan Walsh, Johnny Ching-Wei Lee, Elizabeth Kelley, Kathleen Weigandt, Damien Guironnet, Simon A. Rogers
Abstract
A structure-property-process relation is established for a diblock bottlebrush copolymer solution, through a combination of rheo-neutron scattering, imaging, and rheological measurements. Polylactic acid-b-polystyrene diblock bottlebrush copolymers were dispersed in toluene with a concentration of 175 mg/ml, making a lamellar phase. All measurements were carried out at 5 °C. The solution color, as observed in reflection, is shown to be a function of the shear rate. Under equilibrium and near-equilibrium conditions, the solution has a green color. At low shear rates the solution remains green, while at intermediate rates it is cyan, and at the highest rates applied the solution is indigo. The lamellar spacing is shown to be a decreasing function of shear rate, partially accounting for the color change. The lamellae are oriented 'face-on' with the wall under quiescence and low shear rates, while a switch to 'edge-on' is observed at the highest shear rates, where the reflected color disappears. The intramolecular distance between bottlebrush polymers does not change with shear rate, although at high shear rates, the bottlebrush polymers are preferentially aligned in the vorticity direction within the lamellae. We therefore form a consistent relation between structure and function, spanning a wide range of length scales and shear rates.
Wade, M.
, Walsh, D.
, Lee, J.
, Kelley, E.
, Weigandt, K.
, Guironnet, D.
and Rogers, S.
(2020),
Color, Structure, and Rheology of a Diblock Bottlebrush Copolymer Solution, Soft Matter, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930153
(Accessed October 20, 2025)