NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Kinetics and Mechanism of Poly(3-Hexylthiophene) Crystallization in Solution under Shear-flow
Published
Author(s)
Ngoc A. Nguyen, Hao Shen, Yun Liu, Michael E. Mackay
Abstract
The morphology of poly (3-hexylthiophene) (P3HT) in its liquid phase and its manipulation via flow-induced solution crystallization and its crystallization kinetics was studied to determine its mechanism. Shear-flow induced ordering of semi-conducting P3HT, which generates more perfect crystal structures than quiescent methods, is elucidated through using in-situ rheo-SANS and rheo-SALS and an Avrami analysis performed. Characteristic lengths of P3HT crystals were measured as a function of time, and 3-D networks of percolated P3HT fibril crystals were determined by measuring the fractal dimension, 2.6, through fitting rheo-SANS data with a power law function. Additionally, UV-Vis and DSC results revealed a process of P3HT crystal perfection determined by following the evolution of absorption peaks characteristic of pi-pi stacking at 600 nm and the melting peaks as they shifted and narrowed with respect to increasing shear time. The Avrami exponent, m, approached a maximum value of 2 indicating homogeneous nucleation of P3HT macromolecules that allowed 1-dimensional fibril crystal growing and limited by contact time between the P3HT molecules rather than the diffusion of P3HT chains that is attributed by the highly directional pi-pi stacking attractions of electron pi in the thiophene rings.
Nguyen, N.
, Shen, H.
, Liu, Y.
and Mackay, M.
(2020),
Kinetics and Mechanism of Poly(3-Hexylthiophene) Crystallization in Solution under Shear-flow, Macromolecules, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930338
(Accessed October 15, 2025)