NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A chip-scale optical frequency reference for the telecommunication band based on acetylene
Published
Author(s)
Roy Zektzer, Matthew T. Hummon, Liron Stern, Yefim Barash, Noa Mazurski, John Kitching, Levy Uriel
Abstract
Lasers precisely stabilized to known transitions between energy levels in simple, well-isolated quantum systems such as atoms and molecules are highly desired for myriad of applications ranging from precise measurements to optical communications. The implementation of such spectroscopic systems in a chip-scale format would allow for dramatically reduced cost and would likely open up significant new opportunities in both photonically-integrated platforms and free-space applications such as lidar. Here, we design, fabricate, and experimentally demonstrate a new platform based on chip-scale integration of serpentine photonic nanoscale waveguides with a miniaturized acetylene chamber potentially enabling cost effective, miniaturized and low power optical frequency references in the telecommunications C band spectral range (1530 nm - 1565 nm). We have used this platform to stabilize a telecom laser with a precision better than 400 kHz at 34 s. This small and portable chip-scale molecular cladded waveguide can be integrated with advanced components such as on-chip modulators, detectors, and other devices to form a complete locking system on-chip.
Zektzer, R.
, Hummon, M.
, Stern, L.
, Barash, Y.
, Mazurski, N.
, Kitching, J.
and Uriel, L.
(2020),
A chip-scale optical frequency reference for the telecommunication band based on acetylene, Optica
(Accessed October 7, 2025)