NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Radiation damage of liquid electrolyte during focused X-ray beam photoelectron spectroscopy
Published
Author(s)
Christopher M. Arble, Hongxuan Gou, Evgheni Strelcov, Brian D. Hoskins, Patrick Zeller, Matteo Amati, Luca Gregoratti, Andrei A. Kolmakov
Abstract
Ambient pressure X-ray photoelectron spectroscopy (APXPS) has become an effective tool to interrogate chemical states at surfaces relevant to real operational conditions. Herein we employ a graphene-capped microvolume array sample platform for scanning photoelectron microscopy (SPEM) of liquid-solid electrochemical interfaces using traditional ultra-high vacuum systems. By using the graphene membrane as a working electrode within this setup, we were able to probe the electronic structure of a model electroplating system in operando conditions within the first few nanometers of the electrode/liquid electrolyte interface. We observed that intense X-ray irradiation may affect the chemistry at the liquid-solid interface due to solvent radiolysis by primary radiation, photo- and secondary electrons. We recorded radiolytic products by photoemission spectroscopy and characterized their impact on the chemical speciation at the electrified solid-liquid interface. Three different exposure regimes were tested to elucidate the dependence of XPS radiolytic signatures of the dose rate. The observed effects highlight the need for a careful consideration of radiolytic processes during liquid phase XPS measurements to correctly interrupt experimental results and minimize artifacts
Arble, C.
, Gou, H.
, Strelcov, E.
, Hoskins, B.
, Zeller, P.
, Amati, M.
, Gregoratti, L.
and Kolmakov, A.
(2020),
Radiation damage of liquid electrolyte during focused X-ray beam photoelectron spectroscopy, Surface Science, [online], https://doi.org/10.1016/j.susc.2020.121608
(Accessed October 8, 2025)