NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Today's businesses are increasingly relying on the cloud as an alternative IT solution due to its flexibility and lower cost. Compared to traditional enterprise networks, a cloud infrastructure is typically much larger and more complex. Understanding the potential security threats in such infrastructures is naturally more challenging than in traditional networks. This is evidenced by the fact that there are limited efforts on threat modeling for cloud infrastructures. In this paper, we conduct comprehensive threat modeling exercises based on two representative cloud infrastructures using several popular threat modeling methods, including attack surface, attack trees, attack graphs, and security metrics based on attack trees and attack graphs, respectively. Those threat modeling efforts may provide cloud providers useful lessons toward better understanding and improving the security of their cloud infrastructures. In addition, we show how hardening solution can be applied based on the threat models and security metrics through extended exercises. Such results may not only benefit the cloud provider but also embed more confidence in cloud tenants by providing them a clearer picture of the potential threats and mitigation solutions.
Alhebaishi, N.
, Wang, L.
and Singhal, A.
(2018),
Threat Modeling for Cloud Infrastructures, EAI Endorsed Transactions on Security and Safety, [online], https://doi.org/10.4108/eai.10-1-2019.156246, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=926650
(Accessed October 9, 2025)