NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Milliwatt-threshold visible-telecom optical parametric oscillation using silicon nanophotonics
Published
Author(s)
Xiyuan Lu, Gregory Moille, Anshuman Singh, Qing Li, Daron Westly, Ashutosh Rao, Su P. Yu, Travis Briles, Scott Papp, Kartik Srinivasan
Abstract
The on-chip creation of coherent light at visible wavelengths is of interest to many applications in spectroscopy, sensing, and metrology. Towards that goal, here we propose and demonstrate the first on-chip visible-telecom optical parameteric oscillator (OPO), using a whispering-gallery mode (WGM) cavity on a silicon photonics platform. In contrast to previous works that use WGM photonics to realize telecom-pumped OPOs with a wide spectral separation in the infrared, here we demonstrate a nanophotonic OPO that is pumped in the 900 nm band and generates signal and idler light in the 700 nm and 1300 nm bands, respectively. Moreover, our OPO has a superior power efficiency with a threshold power of (0.9 +/- 0.1) mW, which is more than 50x smaller than the WGM-based infrared OPOs. We further show how the device design can be modified to access other desirable spectral windows with a similar power efficiency, and generate 780 nm and 1500 nm band light using a 1020 nm band pump. Though further development is needed, our nanophotonic visible-telecom OPO shows distinct advantages in power efficiency, operation stability, and device scalability, and is a major advance in the on chip generation of coherent visible light.
Lu, X.
, Moille, G.
, Singh, A.
, Li, Q.
, Westly, D.
, Rao, A.
, Yu, S.
, Briles, T.
, Papp, S.
and Srinivasan, K.
(2019),
Milliwatt-threshold visible-telecom optical parametric oscillation using silicon nanophotonics, Optica, [online], https://doi.org/10.1364/OPTICA.6.001535, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=928495
(Accessed October 9, 2025)