NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Knowledge Extraction for Cryptographic Algorithm Validation Test Vectors by Means of Combinatorial Coverage Measurement
Published
Author(s)
Dimitris Simos, Bernhard Garn, Ludwig Kampel, D. Richard Kuhn, Raghu N. Kacker
Abstract
We present a combinatorial coverage measurement analysis for test vectors provided by the NIST Cryptographic Algorithm Validation Program (CAVP), and in particular for test vectors targeting the AES block ciphers for di erent key lengths and cryptographic modes of operation. These test vectors are measured and analyzed using a combinatorial approach, which was made feasible via developing the necessary input models. The combinatorial model for the test data in combination with the coverage measurement allows to extract information about the structure of the test vectors. Our analysis shows that some test vectors do not achieve full combinatorial coverage. It is further discussed how this retrieved knowledge could be used as a means of test quality analysis, by incorporating residual risk estimation techniques based on combinatorial methods, in order to assist the overall validation testing procedure.
Simos, D.
, Garn, B.
, Kampel, L.
, Kuhn, D.
and Kacker, R.
(2019),
Knowledge Extraction for Cryptographic Algorithm Validation Test Vectors by Means of Combinatorial Coverage Measurement, IFIP Cross Domain (CD) Conference for Machine Learning & Knowledge Extraction, Canterbury, UK, [online], https://doi.org/10.1007/978-3-030-29726-8_13, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=928230
(Accessed October 21, 2025)