NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Which resonances in small metallic nanoparticles are plasmonic?
Published
Author(s)
Emily Townsend, Garnett W. Bryant
Abstract
We use time-dependent density functional theory to examine the character of various resonances corresponding to peaks in the optical response of small metallic nanoparticles. Each resonance has both "sloshing" and "inversion" character. The sloshing mode is an oscillation in the occupation of the shells nearest the Fermi energy, transferring charge back and forth from below the Fermi level to above it. It results in oscillation in charge density near the surface of the particle. Inversions monotonically move charge from occupied to unoccupied states, and result in oscillation in charge density in the core of the particle. We also discuss the dependence of the optical response on the size of the simulation grid, noting that the character of resonances appears stable with respect to changes in simulation size, even though the details of the spectrum change. This makes a reliable characterization possible. We consider what characteristics are important in deciding that a resonance is plasmonic.
Townsend, E.
and Bryant, G.
(2014),
Which resonances in small metallic nanoparticles are plasmonic?, Journal of Optics, [online], https://doi.org/10.1088/2040-8978/16/11/114022, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=916323
(Accessed October 10, 2025)