NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible
Published
Author(s)
Qingbin Fan, Wenqi Zhu, Yuzhang Liang, Pengcheng Huo, Cheng Zhang, Amit Agrawal, Kun Huang, Xiangang Luo, Yanqing Lu, Chengwei Qiu, Henri Lezec, Ting Xu
Abstract
Bending light along arbitrary curvatures is a captivating and popular notion, triggering unprecedented endeavors in achieving quasi-diffraction-free propagation along a curved path in free-space. Much effort has been devoted to achieving this goal in homogeneous space, which solely relies on the transverse acceleration of beam centroid exerted by a beam generator. Here, based on an all-dielectric metasurface, we experimentally report a synthetic strategy of encoding and multiplexing arbitrary acceleration features on a freely propagating light beam, synergized with photonic spin states of light. Independent switching between two arbitrary visible frequency accelerating light beams with distinct acceleration directions and caustic trajectories is achieved. This proof-of-concept recipe demonstrates the strengths of the designed metasurface element: a subwavelength pixel size, independent control over light beam curvature, multi- wavelength operation in the visible, and ultrathin scalable planar architecture. Our results open up the possibility of creating ultra-compact, high-pixel density and flat-profile nanophotonic platforms for efficient generation and dynamical control of structured light beams.
Fan, Q.
, Zhu, W.
, Liang, Y.
, Huo, P.
, Zhang, C.
, Agrawal, A.
, Huang, K.
, Luo, X.
, Lu, Y.
, Qiu, C.
, Lezec, H.
and Xu, T.
(2019),
Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible, Nano Letters, [online], https://doi.org/10.1021/acs.nanolett.8b04571, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=926083
(Accessed October 10, 2025)