NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Analytic description of the impact of grain boundaries on Voc
Published
Author(s)
Paul M. Haney, Benoit H. Gaury
Abstract
The impact of grain boundaries on the performance of polycrsytalline photovoltaics remains an open question. We present a simplified description of dark grain boundary recombination current. The dark current takes the form of a diode equation, and the model provides closed form expressions for the reverse saturation current and ideality factor in terms of grain boundary and system parameters. This model applies under conditions relevant for thin film photovoltaics such as CdTe, namely for $p$-type absorbers with reasonably high bulk hole mobility, positively charged grain boundaries with high defect density, and grains which are not fully depleted. The dark recombination current can be used to predict the open circuit voltage for a given short circuit density, providing a simple closed form expression which shows how grain boundaries impact $V_{\rm oc}$.
Haney, P.
and Gaury, B.
(2017),
Analytic description of the impact of grain boundaries on Voc, 44th IEEE Photovoltaic specialist conference, Washington, DC, [online], https://doi.org/10.1109/PVSC.2017.8366296
(Accessed October 17, 2025)