NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy
Published
Author(s)
Nima Nader, Daniel Maser, Flavio Caldas da Cruz, Abijith S. Kowligy, Henry R. Timmers, Jeffrey T. Chiles, Connor D. Fredrick, Daron A. Westly, Richard P. Mirin, Jeffrey M. Shainline, Scott A. Diddams
Abstract
Infrared spectroscopy is a powerful tool for basic and applied science. The rich spectral fingerprints of compounds in the 3 um - 20 um region provide a means to uniquely identify the molecular structure for applications that include fundamental spectroscopy, tmospheric chemistry, trace and hazardous gas detection, and biological microscopy. Driven by such applications, the development of low-noise coherent laser sources with broad tunable coverage is a topic of great interest. Laser frequency combs possess a unique combination of precisely defined spectral lines and broad bandwidth that can fill the infrared gap and enable the above-mentioned applications. Here, we leverage robust fabrication and geometrical dispersion engineering of silicon nanophotonic waveguides for coherent frequency comb generation in the mid-infrared 3 um - 6.4 um. Precise waveguide fabrication provides user-defined spectra targeted at specific mid-infrared bands, as well as broad coverage exceeding 60 THz. The noise properties of this chip-based frequency comb source are evaluated, and we use the output to perform dual-comb spectroscopy of carbonyl sulfide around 5 um.
Nader, N.
, Maser, D.
, Caldas, F.
, Kowligy, A.
, Timmers, H.
, Chiles, J.
, Fredrick, C.
, Westly, D.
, Mirin, R.
, Shainline, J.
and Diddams, S.
(2018),
Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy, Nature Photonics, [online], https://doi.org/10.10631/1.5006914
(Accessed October 9, 2025)