NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Three-level Haldane-like model on a dice optical lattice
Published
Author(s)
Ian B. Spielman, T. Andrijauskas, E. Anisimovas, M. Raciunas, A. Mekys, V. Kudriasov, G. Juzeliunas
Abstract
We consider ultracold atoms in a two-dimensional optical lattice of the dice geometry in a tight-binding regime. The atoms experience a laser-assisted tunneling between the nearest neighbor sites of the dice lattice accompanied by the momentum recoil. This allows one to engineer staggered synthetic magnetic fluxes over plaquettes, and thus pave a way towards the realization of topologically nontrivial band structures. In such a lattice the real-valued next-nearest neighbor transitions are not needed to reach a topological regime. Yet, such transitions can increase a variety of the obtained topological phases. The dice lattice represents a triangular Bravais lattice with a three-site basis consisting of a hub site connected to two rim sites. As a consequence, the dice lattice supports three energy bands. From this point of view, our model can be interpreted as a generalization of the paradigmatic Haldane model which is reproduced if one of the two rim sublattices is eliminated. We demonstrate that the proposed upgrade of the Haldane model creates a significant added value, including an easy access to topological semimetal phases relying only on the nearest neighbor coupling, as well as enhanced topological band structures featuring Chern numbers higher than one leading to physics beyond the usual quantum Hall effect. The numerical investigation is supported and complemented by an analytical scheme based on the study of singularities in the Berry connection.
Spielman, I.
, Andrijauskas, T.
, Anisimovas, E.
, Raciunas, M.
, Mekys, A.
, Kudriasov, V.
and Juzeliunas, G.
(2015),
Three-level Haldane-like model on a dice optical lattice, Physical Review A, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=925743
(Accessed October 13, 2025)