NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A Measure of Dependence for Cryptographic Primitives Relative to Ideal Functions
Published
Author(s)
Daniel C. Smith-Tone, Cristina Tone
Abstract
In this work we present a modification of a well-established measure of dependence appropriate for the analysis of stopping times for adversarial processes on cryptographic primitives. We apply this measure to construct generic criteria for the ideal behavior of fixed functions in both the random oracle and ideal permutation setting. More significantly, we provide a nontrivial extension of the notion of hash function indifferentiability, transporting the theory from the status of providing security arguments for protocols utilizing ideal primitives into the more realistic setting of protocol assurance with xed functions. The methodology this measure introduces to indifferentiability analysis connects the security of a hash function with an indifferentiable mode to the security of the underlying compression function in a quantitative way; thus, we prove that dependence results on cryptographic primitives provide a direct means of determining the practical resistance or vulnerability of protocols employing such primitives.
Smith-Tone, D.
and Tone, C.
(2015),
A Measure of Dependence for Cryptographic Primitives Relative to Ideal Functions, Rocky Mountain Journal of Mathematics, [online], https://doi.org/10.1216/RMJ-2015-45-4-1283
(Accessed October 12, 2025)