NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Investigation of complementary use of optical metrology and x-ray computed tomography for surface finish in laser powder bed fusion additive manufacturing
Published
Author(s)
Jason Fox, Felix Kim, Zachary Reese, Christopher Evans
Abstract
The development of additive manufacturing (AM) has allowed for increased complexity of designs over traditional manufacturing; however, increased design complexity leads to greater difficulties in post process finishing of the part surfaces. Additionally, uncertainty surrounding the quality of the complex as-built surfaces hinders wide scale adoption of AM. As such, a strong understanding of the as-built surface texture is required to help determine quality of the resultant part. Complex geometries and internal surfaces create challenges for conventional surface finish metrology, but X-ray Computed Tomography (XCT) has emerged as a candidate since it does not require direct line of sight to the surface being measured. In this work, a comparison of XCT and optical measurements are performed on additively manufactured samples with two main goals: To determine the capability of XCT measurements as a tool for surface finish metrology and to determine if XCT measurements can provide insight into locations of overhangs and undercuts, which are difficult to identify through more conventional surface finish metrology and may have a drastic effect on part performance. Samples made from nickel alloy 625 and 17-4 stainless steel were built using a commercially available laser powder bed fusion (LPBF) system. Laser confocal and XCT measurements are performed on the samples and compared to each other and to SEM images of the parts. The result of this work provides an investigation to the use of XCT for surface finish metrology, as well as the capability of XCT to provide better context for conventional surface finish metrology data near undercut features on the surface of AM parts.
Proceedings Title
Dimensional Accuracy and Surface Finish in Additive Manufacturing
Conference Dates
October 8-11, 2017
Conference Location
Leuven, BE
Conference Title
European Society for Precision Engineering and Technology Special Interest Group
Fox, J.
, Kim, F.
, Reese, Z.
and Evans, C.
(2017),
Investigation of complementary use of optical metrology and x-ray computed tomography for surface finish in laser powder bed fusion additive manufacturing, Dimensional Accuracy and Surface Finish in Additive Manufacturing, Leuven, BE, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=923764
(Accessed October 17, 2025)