NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Electromechanical Properties and Charge Transport of Ca3TaGa3Si2O14 (CTGS) Single Crystals at Elevated Temperatures
Published
Author(s)
Yuriy Suhak, Michal Schulz, Ward L. Johnson, Andrei Sotnikov, Hagen Schmidt, Holger Fritze
Abstract
Structurally ordered piezoelectric Ca3TaGa3Si2O14 (CTGS) single crystals are studied. The elastic and piezoelectric constants are determined in the temperature range from 20 °C to 900 °C by two independent approaches: resonant and pulse-echo acoustics methods. Further, the temperature dependent acoustic losses are examined. These investigations reveal two loss peaks with maxima near 68 °C and 416 °C at 4.5 MHz that are attributed to anelastic point defect relaxations. Further, the transport of oxygen is investigated using the isotope 18O as a tracer at temperatures from 1000 °C to 1200 °C. It is shown that the oxygen self-diffusion coefficients are at least three orders of magnitude lower than those of langasite, which is one reason for relatively low losses in CTGS at temperatures on the order of 1000 °C. Finally, the long-term stability of fundamental materials properties including electrical conductivity and resonance frequency is examined at 1000 °C. After one year of thermal treatment, the resonance frequency of resonators made from crystals of different sources is found to decrease only between 0.1 % and 0.4 %.
Suhak, Y.
, Schulz, M.
, Johnson, W.
, Sotnikov, A.
, Schmidt, H.
and Fritze, H.
(2018),
Electromechanical Properties and Charge Transport of Ca3TaGa3Si2O14 (CTGS) Single Crystals at Elevated Temperatures, Solid State Ionics, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=924300
(Accessed October 8, 2025)