NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Electromagnetically induced transparency in vacuum and buffer gas potassium cells probed via electro-optic frequency combs
Published
Author(s)
David A. Long, Adam J. Fleisher, David F. Plusquellic, Joseph T. Hodges
Abstract
Electromagnetically induced transparency (EIT) in 39K and 41K was probed using electro-optic frequency combs generated by applying chirped waveforms to a phase modulator. The carrier tone of the frequency comb served as the pump beam and induced the necessary optical cycling. Comb tooth spacings as narrow as 20 kHz were used to probe potassium in both buffer gas and evacuated cells at elevated temperatures. Features as narrow as 33(5) kHz were observed allowing for the 39K lower state hyperfine splitting to be optically measured with a fit uncertainty of 2 kHz. Due to the ultranarrow width of the EIT features, long-lived free induction decays were also observed which allowed for background-free detection.
Long, D.
, Fleisher, A.
, Plusquellic, D.
and Hodges, J.
(2017),
Electromagnetically induced transparency in vacuum and buffer gas potassium cells probed via electro-optic frequency combs, Optics Letters, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=923450
(Accessed October 1, 2025)