NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Cryogenic LED pixel-to-frequency mapper for kinetic inductance detector arrays
Published
Author(s)
Jiansong Gao, Xiangliang Liu, W Guo, Wei L.F., Christopher M. McKenney, Bradley J. Dober, Tasha Billings, Johannes Hubmayr
Abstract
We present a cryogenic wafer mapper based on light emitting diodes (LEDs) for mapping a large microwave kinetic inductance detector (MKID) array. In this scheme, an array of LEDs, addressed by DC wires and collimated through horns onto the detectors, are mounted in front of the detector wafer. By illuminating the LED individually and sweeping the frequency response of all the resonators, we can unambiguously correspond a detector pixel to its measured resonance frequency. We have demonstrated mapping a 75~mm $90$-pixel MKID array using a mapper containing $126$ LEDs with $16$ DC bias wires. Our LED wafer mapper has no moving parts and is easy to implement. It may find broad applications in superconducting detector and quantum computing/information experiments.
Gao, J.
, Liu, X.
, Guo, W.
, L.F., W.
, McKenney, C.
, Dober, B.
, Billings, T.
and Hubmayr, J.
(2017),
Cryogenic LED pixel-to-frequency mapper for kinetic inductance detector arrays, Applied Physics Letters, [online], https://doi.org/10.1063/1.4994170
(Accessed October 10, 2025)