NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Small Particle Driven Chain Disentanglements in Polymer Nanocomposites
Published
Author(s)
Erkan NMN Senses, Siyam M. Ansar, Christopher L. Kitchens, Yimin NMN Mao, Suresh Narayanan, Bharath NMN Natarajan, Antonio Faraone
Abstract
Using neutron spin-echo spectroscopy, X-ray photon correlation spectroscopy and bulk rheology, we studied the effect of particle size on the single chain dynamics, particle mobility, and bulk viscosity in athermal polyethylene oxide-gold nanoparticle composites. The result reveal a {approximately equal} 25 % increase of the reptation tube diameter with addition of nanoparticles smaller than entanglement mesh size ({approximately equal}5 nm), at a volume fraction of 20%. The tube diameter remains unchanged in composite with large nanoparticles at the same loading. In any case, the Rouse dynamics is insensitive to particle size. These results provide a direct experimental observation of particle size driven disentanglements that can cause non-Einstein-like viscosity trends often observed in polymer nanocompsites.
, E.
, , S.
, , C.
, , Y.
, Narayanan, S.
, , B.
and Faraone, A.
(2017),
Small Particle Driven Chain Disentanglements in Polymer Nanocomposites, Physical Review Letters, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=922279
(Accessed October 11, 2025)