NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
In this paper, we look at long geometric progressions on different model of elliptic curves, namely Weierstrass curves, Edwards and twisted Edwards curves, Huff curves and general quartics curves. By a geometric progression on an elliptic curve, we mean the existence of rational points on the curve whose x-coordinate (or y-coordinate) are in geometric progression. We find infinite families of twisted Edwards curves and Huff curves with geometric progressions of length 5, an infinite family of Weierstrass curves with 8 term progressions, as well as infinite families of quartic curves containing 10-term geometric progressions.
Aziz Ciss, A.
and Moody, D.
(2017),
Geometric Progressions on Elliptic Curves, GLASNIK MATEMATICKI, [online], https://doi.org/10.3336/gm.52.1.01, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=922951
(Accessed October 14, 2025)