NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Measurement and Modeling of Polarized Specular Neutron Reflectivity in Large Magnetic Fields
Published
Author(s)
Brian B. Maranville, Brian J Kirby, Alexander J Grutter, Paul Kienzle, Charles F. Majkrzak, Yaohua Liu, Cindi L. Dennis
Abstract
The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrodinger equation that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample however, there will be significant scattering from one spin state into the other reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. The theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement.
, B.
, , B.
, , A.
, Kienzle, P.
, , C.
, Liu, Y.
and , C.
(2016),
Measurement and Modeling of Polarized Specular Neutron Reflectivity in Large Magnetic Fields, Journal of Applied Crystallography, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=921122
(Accessed October 11, 2025)