NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A Heron quadrilateral is a cyclic quadrilateral with rational area. In this work, we establish a correspondence between Heron quadrilaterals and a family of elliptic curves of the form y^2=x^3+\alpha x^2-n^2 x. This correspondence generalizes the notions of Goins and Maddox who established a similar connection between Heron triangles and elliptic curves. We further study this family of elliptic curves, looking at their torsion groups and ranks. We also explore their connection with congruent numbers, which are the \alpha=0 case. Congruent numbers are positive integers which are the area of a right triangle with rational side lengths.
Izadi, F.
, Khoshnam, F.
and Moody, D.
(2017),
Heron Quadrilaterals via Elliptic Curves, Rocky Mountain Journal of Mathematics, [online], https://doi.org/10.1216/RMJ-2017-47-4-1227, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=917343
(Accessed October 7, 2025)