NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Preparation of entangled states through Hilbert space engineering
Published
Author(s)
Yiheng Lin, John P. Gaebler, Florentin Reiter, Ting R. Tan, Ryan S. Bowler, Yong Wan, Adam C. Keith, Emanuel Knill, Kevin Coakley, Dietrich Leibfried, David J. Wineland, Scott Glancy
Abstract
Entangled states are a crucial resource for quantum-based technologies such as quantum computers and quantum communication systems. Exploring new methods for entanglement generation is important for diversifying and eventually improving current approaches. Here, we create entanglement in atomic ions by applying laser fields to constrain evolution to a restricted number of states, in an approach that has become known as quantum Zeno dynamics. With two trapped 9Be+ ions, we obtain Bell state fidelities 0:993+2-3; with three ions, a W-state fidelity of 0:910+4-5 . Compared to other methods of producing entanglement in trapped ions, this procedure is relatively insensitive to certain imperfections such as fluctuations in laser intensity and frequency, and ion-motion frequencies.
Lin, Y.
, Gaebler, J.
, Reiter, F.
, Tan, T.
, Bowler, R.
, Wan, Y.
, Keith, A.
, Knill, E.
, Coakley, K.
, Leibfried, D.
, Wineland, D.
and Glancy, S.
(2016),
Preparation of entangled states through Hilbert space engineering, Science Journal, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=920293
(Accessed October 8, 2025)