Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Bradley Alpert (Fed)

Dr. Alpert leads the Mathematical Analysis and Modeling Group of the Applied and Computational Mathematics Division.  His research interests center on algorithms for scientific computation. As a numerical analyst, he develops algorithms for solution of integral equations and partial differential equations. Expertise includes fast multipole methods, high-order quadrature techniques, special functions of mathematical physics, harmonic-analysis-based methods, wavelets, signal processing, and machine learning. Research applications include computational electromagnetics, including time-domain methods and nonreflecting boundary conditions.  His recent work includes computational methods for thermophysical equations of state and data analysis for low-temperature superconducting transition-edge sensors.  Dr. Alpert earned a B.S. from University of Illinois, Urbana-Champaign (1978), S.M. from University of Chicago (1979), and Ph.D. from Yale University (1990).

Publications

Most stringent bound on electron neutrino mass obtained with a scalable low temperature microcalorimeter array

Author(s)
Bradley Alpert, Daniel Becker, Douglas Bennett, Joseph Fowler, Johnathon Gard, John Mates, Carl Reintsema, Daniel Schmidt, Daniel Swetz, Joel Ullom, Leila Vale, M. Balata, S. Nisii, A. Bevilacqua, M. De Gerone, G. Gallucci, L. Parodi, F. Siccardi, A. Borghesi, P. Campana, R. Carobene, M. Faverzani, A. Giachero, M. Gobbo, D. Labrbca, R. Morette, A. Nuciotti, L. Origo, S. Ragazzi, G. Ceruti, E. Ferri, G. Pessina, E. Celasco, F. Gatti, R. Dressler, E. Maugeri, D. Schumann, U Koster, M. Lusignoli, P. Manfrinetti, F Ahrens, E Bogini, M. Borghesi, P. Campana, R. Carbene, L. Ferrari Barusso, E. Ferri, G. Gallucci
The determination of the absolute neutrino mass scale remains a fundamental open question in particle physics, with profound implications for both the standard

Nanoscale Three-Dimensional Imaging of Integrated Circuits Using a Scanning Electron Microscope and Transition-Edge Sensor Spectrometer

Author(s)
Nathan Nakamura, Paul Szypryt, Amber Dagel, Bradley Alpert, Douglas Bennett, W.Bertrand (Randy) Doriese, Malcolm Durkin, Joseph Fowler, Dylan Fox, Johnathon Gard, Ryan Goodner, James Zachariah Harris, Gene C. Hilton, Edward Jimenez, Burke Kernen, Kurt Larson, Zachary H. Levine, Daniel McArthur, Kelsey Morgan, Galen O'Neil, Christine Pappas, Carl D. Reintsema, Dan Schmidt, Peter Schulz, Daniel Swetz, Kyle Thompson, Joel Ullom, Leila R. Vale, Courtenay Vaughan, Christopher Walker, Joel Weber, Jason Wheeler
X-ray nanotomography is a powerful tool for the characterization of nanoscale materials and structures, but it is difficult to implement due to the competing

Patents (2018-Present)

X-Ray Spectrometer

X-Ray Spectrometer

NIST Inventors
Kevin L. Silverman , Carl D. Reintsema , Galen O'Neil , Luis Miaja Avila , Daniel Swetz , W.Bertrand (Randy) Doriese , Dan Schmidt , Bradley Alpert , Joseph Fowler , Joel Ullom and Ralph Jimenez
This invention includes: an x-ray plasma source that produces primary x-rays; an x-ray optic that transmits and focuses the primary x-ray onto a sample jet from which fluorescence x-ray are emitted; and a microcalorimeter array detector that measures the energy of the incoming fluorescence x-rays
Created May 31, 2018, Updated September 30, 2025
Was this page helpful?