NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Alkylperoxy Radical Photochemistry in Organic Aerosol Formation Processes
Published
Author(s)
Alicia Kalafut-Pettibone, Joseph Klems, Donald R. Burgess Jr., William S. McGivern
Abstract
Recent studies have shown that 254 nm light can be used to generate organic aerosol from iodoalkane/air mixtures via photodissociation of the C−I bond and subsequent oxidation of the single radical isomer. We examine organic aerosol formed from 1-iodooctane photolysis using high-performance liquid chromatography (HPLC) with derivatization to selectively probe carbonyl- and hydroxyl-containing molecules. Tan- dem mass spectrometry is used to examine the product distributions, which are found to be much more complex than the traditional low-NOx peroxy-peroxy oxidation mechanisms would justify. We propose that this difference is due to peroxy radical photochemistry that leads to reactions typically found only in combustion mechanisms: direct peroxy radical isomerization and the reverse dissociation reaction that leads to a vibrationally excited parent molecule that can scramble the location of the radical site. A branching ratio for these channel is estimated using a canonical representation of the internal energy distribution. Lifetime estimates using extrapolated ethyl peroxy absorption cross sections and the actinic flux near 310 nm show that peroxy radical photochemistry can play a significant role in defining the product spectrum of secondary organic aerosol in pristine (low-NOx) environments.
Kalafut-Pettibone, A.
, Klems, J.
, Burgess Jr., D.
and McGivern, W.
(2013),
Alkylperoxy Radical Photochemistry in Organic Aerosol Formation Processes, Journal of Physical Chemistry A, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=914419
(Accessed October 8, 2025)