NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Toward Quantitative Fluorescence Measurements with Multicolor Flow Cytometry
Published
Author(s)
Lili Wang, Adolfas Gaigalas, Gerald Marti, Fatima Abbasi, Robert A. Hoffman
Abstract
A procedure is presented for calibrating the output of a multicolor flow cytometer in units of antibodies bound per cell (ABC). The procedure involves two steps. First, each of the fluorescence channels of the flow cytometer is calibrated using Ultra Rainbow beads with assigned values of equivalent number of reference fluorophores (ERF). The objective of this step is to establish a linear relation between the fluorescence signal in a given fluorescence channel of multicolor flow cytometers and the value of ERF. The second step involves a biological standard such as a lymphocyte with a known number of antibody binding sites (e.g., CD4 binding sites). The biological standard is incubated with antibodies labeled with one type of fluorophores for a particular fluorescence channel and serves to translate the ERF scale to an ABC scale. A significant part of the two-step calibration procedure involves the assignment of ERF values to the different populations of Ultra Rainbow beads. The assignment of ERF values quantifies the relative amount of embedded fluorophore mixture in each bead population. It is crucial to insure that the fluorescence signal in a given range of fluorescence emission wavelengths is related linearly to the assigned values of ERF. The biological standard has to posses a known number of binding sites for a given antibody. In addition, this antibody has to be amenable to labeling with different types of fluorophores associated with various fluorescence channels. The present work suggests that all of the requirements for a successful calibration of a multicolor flow cytometer in terms of ABC values can be fulfilled. The calibration procedure is based on firm scientific foundations so that it is easy to envision future improvements in accuracy and ease of implementation.
Wang, L.
, Gaigalas, A.
, Marti, G.
, Abbasi, F.
and Hoffman, R.
(2007),
Toward Quantitative Fluorescence Measurements with Multicolor Flow Cytometry, Cytometry Part A, [online], https://doi.org/10.1002/cyto.a.20507, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=922575
(Accessed October 14, 2025)