NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Single-frequency 571 nm VECSEL for photoionization of magnesium
Published
Author(s)
Shaun C. Burd, Tomi Leinonen, Jussi-Pekka Penttinen, David T. Allcock, Daniel H. Slichter, Raghavendra Srinivas, Andrew C. Wilson, Micrea Guina, Dietrich G. Leibfried
Abstract
We report the development of an intracavity-frequency-doubled VECSEL emitting at 571 nm for photoionization of magnesium. The laser employs a V-cavity geometry with a gain chip at the end of one cavity arm and a lithium triborate (LBO) crystal for second harmonic generation. The gain chip has a bottom-emitting design with ten GaInAs quantum wells of 7nm thickness, which are strain compensated by GaAsP. The system is capable of producing up to 2.4 ± 0.1 W (total power in two separate output beams) in the visible. The free-running relative intensity noise was measured to be below -55 dBc/Hz over all frequencies from 1 Hz to 1 MHz. With acoustic isolation and temperature regulation of the laser breadboard, the mode-hop free operation time is typically over 5hrs. To improve the long-term frequency stability, the laser can be locked to a Doppler-free transition of molecular iodine. To estimate the short-term linewidth, the laser was tuned to the resonance of a reference cavity. From analysis of the on-resonance Ha ¿nsch-Couillaud error signal we infer a linewidth of 50 ± 10 kHz. Light at 285 nm is generated with an external build-up cavity containing a β-barium borate (BBO) crystal. The UV light is used for loading 25Mg+ ions in a surface-electrode RF Paul trap. These results demonstrate the applicability and versatility of high-power, single-frequency VECSELs with intracavity harmonic generation for applications in atomic and molecular physics.
Burd, S.
, Leinonen, T.
, Penttinen, J.
, Allcock, D.
, Slichter, D.
, Srinivas, R.
, Wilson, A.
, Guina, M.
and Leibfried, D.
(2016),
Single-frequency 571 nm VECSEL for photoionization of magnesium, SPIE Photonics West Exhibition, San Francisco, CA, [online], https://doi.org/10.1117/12.2213398
(Accessed October 8, 2025)