NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Determination of Closed Porosity in Rocks by Small-Angle Neuron Scattering
Published
Author(s)
Jitendra Bahadur, Christian R. Medina, Lilin He, Yuri B. Melnichenko, John A. Rupp, Tomasz P. Blach, David F. Mildner
Abstract
Small-angle neutron (SANS) and ultra small-angle neutron scattering (USANS) has been used to study a carbonate rock from a deep saline aquifer that is a potential candidate for storage reservoir for CO2 sequestration. A new methodology is developed for estimating the fraction of accessible and inaccessible pore volume using SANS/USANS measurements. This method does not require achieving zero average contrast (ZAC)for the calculation of accessible and inaccessible pore volume fraction. The scattering intensity at high-Q increases with increasing CO2 pressure in contrast to the low-Q behaviour where intensity decreases with pressure. Data treatment for high-Q scattering at different pressure of CO2 is also introduced to explain this anomalous behaviour. The analysis has been shown that a significant portion of the pore system are micropores (<2nm) and that the majority (80%) of these micropores remains inaccessible to CO2 at reservoir pressures.
closed porosity, CO2 storage reservoir, fractal pores, polydisperse micropores, pore size distribution, scattering length density, small-angle neutron scattering, supercritical CO2
Citation
Bahadur, J.
, Medina, C.
, He, L.
, Melnichenko, Y.
, Rupp, J.
, Blach, T.
and Mildner, D.
(2016),
Determination of Closed Porosity in Rocks by Small-Angle Neuron Scattering, Journal of Applied Crystallography, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=921370
(Accessed November 3, 2025)