NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Smart Machining Systems: Issues and Research Trends
Published
Author(s)
Laurent Deshayes, Lawrence A. Welsch, Alkan Donmez, Robert W. Ivester, David E. Gilsinn, Richard L. Rhorer, Eric P. Whitenton, Florian Potra
Abstract
Smart Machining Systems (SMS) are an important part of Life Cycle Engineer-ing (LCE) since its capabilities include: producing the first and every product correct; improving the response of the production system to changes in demand (just in time); realizing rapid manufacturing; and, providing data on an as needed basis. Thereby, SMS improve the performance of production systems and reduce production costs. In addition, an SMS not only has to improve a particular ma-chining process, but it also has to determine the best optimized solution to pro-duce the part faster, better, at lower cost, and with a minimum impact on the en-vironment. In addition, new software tools are required to facilitate the improvement of a machining system, characterized by a high level of expertise or heuristic methods. A global approach requires integrating knowl-edge/information about the product design, production equipment, and machin-ing process. This paper first discusses the main characteristics and components that are envisioned to be part of SMS. Then, uncertainties associated with mod-els and data and the optimization tasks in SMS are discussed. Robust Optimiza-tion is an approach for coping with such uncertainties in SMS. Current use of machining models by production engineers and associated problems are dis-cussed. Finally, the paper discusses interoperability needs for integrating SMS into the product life cycle, as well as the need for knowledge-based systems. The paper ends with a description of future research trends and work plans.
Citation
Life Cycle Engineering and Sustainable Development
Publisher Info
SPRINGER, Edt. D. Brissaud, S. Tichkiewitch, P.Zwolinski,
Knowledge bases, Life Cycle Engineering, Ontologies, Robust Optimization, Smart Machining Systems
Citation
Deshayes, L.
, Welsch, L.
, Donmez, A.
, Ivester, R.
, Gilsinn, D.
, Rhorer, R.
, Whitenton, E.
and Potra, F.
(2005),
Smart Machining Systems: Issues and Research Trends, SPRINGER, Edt. D. Brissaud, S. Tichkiewitch, P.Zwolinski, , [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=822333
(Accessed October 10, 2025)