NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Charge Screening in RNA: An Integral Route for Dynamical Enhancements
Published
Author(s)
Joon Ho Roh, Madhu Sudan Tyagi, Pulakesh Aich, R. M. Briber, Sarah A. Woodson, Kimoon Kim
Abstract
Electrostatic interactions of RNA are in the center of determining the dynamical flexibility and structural stability. By Analysing neutron scattering spectroscopy, we show that fast dynamics of hydrated tRNA on ps to ns timescales increases with stronger charge screening, while its structural stability either increases or remains largely unchanged. An unprecedented electrostatic threshold for the onset of additional flexibility is induced from the correlation between the charge-screening density of counterions and the promoted dynamical properties. The results demonstrate that the enhanced dynamical flexibility of tRNA originates from local conformational relaxation coupled with stabilized charge screening rather than governed by fluctuation of hydrated counterions. The present study casts light on the specificity of electrostatic interactions to thermodynamic balance between dynamical flexibility and structural stability of RNA.
Roh, J.
, Tyagi, M.
, Aich, P.
, Briber, R.
, Woodson, S.
and Kim, K.
(2015),
Charge Screening in RNA: An Integral Route for Dynamical Enhancements, Soft Matter, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=919355
(Accessed October 11, 2025)