Brief
Dr. Windom attended the University of Florida where he received his Bachelors, Masters, and PhD degrees in Mechanical Engineering. For his graduate work, he studied under Dr. David Hahn in a laser based diagnostic laboratory. There, he developed advanced diagnostics techniques to investigate a number of fundamental and applied engineering topics. Bret's PhD dissertation investigated fundamental problems in tribological systems using optical diagnotsic techniques. More specifically, Raman spectroscopy to characterize oxidation tendencies of molybdenum disuphihide, a solid lubricant used in many applications, and atomic emission spectroscopy (AES) applied to measure constituent species present in arcs to better understand their role in the wear of electrical sliding contacts. As a side project, Bret performed fundamental research to better understand the physical processes associated with the interactions of laser-induced plasmas and aerosol particles to advance laser induced breakdown spectroscopy (LIBS) as a comtemporary anayltical tool.
Alternative Fuel Characterization
Currently, Bret's research projects are involved with investigating and advancing volatility measurements of hydrocarbons/petrochemicals. He has designed a new apparatus and method to precisely measure complex fluid volatilities at reduced pressure called the reduced pressure advanced distillation curve (RP-ADC) apparatus. Using the new apparatus and method coupled with GC-MS, temperature degradation effects of crude oils and biodiesel fuels have been investigated.
Using the atmospheric advanced distillation curve method Bret has analyzed the vapor liquid equilibrium variability of rocket propellants, investigated the volatility properties of biodiesel fuels produced from many different feedstocks, compared volatility properties and energy content of newly developed unleaded aviation fuels to traditional leaded blends, and investigated diesel fuel oxygenates and their effect on fuel properties.
Windom, B.C., Lovestead, T.M., Mascal, M. Nikitin, E.B., Bruno, T.J., Advanced distillation curve analysis on ethyl levulinate as a diesel fuel oxygenate and a hybrid biodiesel fuel, Energy & Fuels, 1878-1890, 2011
Lovestead, T.M., Windom, B.C., Riggs, J.R., Nickell, C., Bruno, T.J., Assessment of the compositional variability of RP-1 and RP-2 with the advanced distillation curve approach, Energy & Fuels, 24, 5611-5623, 2010.
Windom, B.C., Lovestead, T.M., Bruno, T.J., Application of the advanced distillation curve to the development of unleaded aviation gasoline, Energy & Fuels, 24, 3275-3284, 2010.
Bruno, T.J., Windom, B.C., Method and apparatus for the thermal stress of complex fluids: application to fuels, Energy & Fuels, in press.
Low Pressure SamplingWindom, B.C., Bruno, T.J., Improvements in the measurement of distillation curves. 5. reduced pressure advanced distillation curve method, Ind. Eng. Chem. Res. , 50, 1115-1126, 2011
Windom, B.C., Bruno, T.J. Novel reduced pressure balanced syringe for chromatographic analysis, J. Chromatogr., 1217 (47), 7434-7439, 2010.