Just a Standard Blog
Whether from skin cells, saliva, semen or blood, DNA from a crime scene is often collected and tested in a lab to see if a suspect’s DNA is likely a contributor to that sample or not. But every DNA sample tells a different story, and some samples are easier to interpret than others. The simplest type of DNA profile to interpret is one where the sample includes hundreds of cells from only one person. When two or more people have contributed to a sample, it’s called a DNA mixture. Some mixtures are so complicated that their stories remain a mystery even to the best forensic DNA experts.
John Butler, a Fellow at the National Institute of Standards and Technology (NIST), and a team of authors have recently completed a draft scientific foundation review of the different methods forensic laboratories use to interpret DNA mixtures. The team urged for more interlaboratory participation in studies to demonstrate consistency in methods and the technology used in DNA mixture interpretation, as well as a need for sharing data publicly. In this interview with NIST’s Christina Reed, Butler — who has over 30 years of experience with DNA profiling, is the author of five books on the subject, and has led training workshops on interpreting DNA mixtures — answers some basic questions about the importance of this fast-growing field of forensic science.
Recent advances in technology and methods have allowed labs to test DNA samples that contain fewer and fewer cells and come from multiple sources. If single-source DNA is like basic arithmetic and a two-person mixture is like algebra, then a complicated mixture is like calculus! Each advance builds upon the fundamental properties of the other less-complicated concept and requires additional training and perspective to navigate. In our review, we discuss the importance of understanding the underlying principles in order to better appreciate the limits. We wanted to see if there were established methodologies that worked better than others when tested, and where those limits were being drawn. What we found is that there is not enough publicly available data to enable an external and independent assessment of the degree of reliability of DNA mixture interpretation practices.
An important part of science is sharing results, so that others may test the methods themselves and see if the results are reproducible. DNA testing has 35 years of scientific history. People have confidence in the results from DNA testing of a single source or simple mixture sample because rigorous studies have demonstrated that this type of testing produces consistent and reproducible results. Ideally, complicated DNA mixtures should undergo the same level of scrutiny to confirm their reliability.
People constantly shed small amounts of DNA into the environment. By touching something or someone else, coughing, or even speaking, people can potentially transfer small amounts of DNA from one surface to another. For example, if I shake your hand and touch a table, I may transfer some of your skin cells to that surface. With improvements in DNA testing methods, we don’t need much DNA to make a profile and see perhaps if I am a likely contributor to that sample or if you have contributed — even if you never touched the table directly. That level of DNA profiling is useful for many different types of crimes, but also brings up the issue of relevance. We aren’t explaining how DNA got to a location. The analyst isn’t answering the question “Is this person’s DNA on this sample?” with a yes or no; they provide instead a likelihood ratio that indicates probability. If the DNA mixture is too complicated, they might also say, “I can’t tell.”
To interpret a DNA profile, the DNA analyst uses their judgment, training, experience and tools, including computer software, and considers factors such as case context. You have to understand the limitations of your system, and that is possible by testing it with known DNA samples that are as complicated as the ones you are trying to interpret. This helps to identify the edges of your system, and not just for software. If you know what questions you are trying to answer and you ask yourself, “Do I have the information I need to answer this?,” sometimes you don’t, and that’s when you know you’ve reached your limit.
An important part of science and advancing any field in science is sharing results with others. If we increase our understanding of the causes of variability among laboratories and analysts, then we can help determine where improvements are needed and help increase confidence in DNA mixture interpretations across the entire community. Labs can help improve confidence by collecting their data and sharing that data, especially the data used in performance checking. That’s when you know the correct answer and you test the performance of the models with data similar in complexity to the case situation that’s being considered. Making that data available and explaining it will increase confidence. Then people can say, “The reason I have confidence in these results is that I have tested my system against samples that are similar in complexity to this one and the system produced reliable results.”
I’m looking to speak to a specialist about mixed DNA samples and they’re accuracy with 3 or more mixed samples. If there is a forum or chat , please let me know. I’m very interested due to an ongoing court case I’m helping with. Please send any info to Mauricelacroix344@yahoo.com thank you
Why would there be a reluctance to share data between Labs? A data base set to accept high profile samples from a lab with quality control issues, the contributor is unable or unwilling to reveal, could present long term problems the lab is not prepared to deal with. Money, Staff, equipment, reputation. Performance checking could definitely be an avenue to increased confidence.
very interesting, We would request to have a virtual meeting with Dr. JohnButtler. Is it possible to tell the number of contributors from a DNA mixture?
I have no experience with DNA, but the article triggered two questions:
1. How is DNA related to measurement science? If yes, can metrology concepts by applied?
2. Are DNA images seen on monitors, depending on monitors’ “finesse” (number of pixels, etc), to be able to detect fewer and fewer sample?
Again, i have no DNA experience.
Thank you.