NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
This paper presents a bilayer model to account for surface effects on the wrinkling of ultrathin polymer films. Assuming a surface layer of finite thickness, effects of surface properties on the critical strain, the equilibrium wavelength, and the wrinkle amplitude are discussed in comparison with conventional analysis. Experimental measurements of wrinkling in polymer films with thickness ranging from 200 nm to 5 nm are conducted. The bilayer model provides a consistent understanding of the experiments that deviate from conventional analysis for thickness less than 30 nm. A set of empirical surface properties is deduced from the experimental data.
Huang, R.
, Stafford, C.
and Vogt, B.
(2006),
Wrinkling of Ultrathin Polymer Films, Materials Research Society Spring Meeting, Undefined, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=852609
(Accessed October 13, 2025)