NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A Weighted GCV Method for Lanczos Hybrid Regularization
Published
Author(s)
Julianne Chung, James G. Nagy, Dianne M. O'Leary
Abstract
Lanczos-hybrid regularization methods have been proposed as effective approaches for solving large-scale ill-posed inverse problems. Lanczos methods restrict the solution to lie in a Krylov subspace, but they are hindered by semi-convergence behavior, in that the quality of the solution first increases and then decreases. Hybrid methods apply a standard regularization technique, such as Tikhonov regularization, to the projected problem at each iteration. Thus, regularization in hybrid methods is achieved both by Krylov filtering and by appropriate choice of a regularization parameter at each iteration. In this paper we describe a weighted generalized cross validation (W-GCV) method for choosing the parameter. Using this method we demonstrate that the semi-convergence behavior of the Lanczos method can be overcome, making the solution less sensitive to the number of iterations.
Chung, J.
, Nagy, J.
and O'Leary, D.
(2008),
A Weighted GCV Method for Lanczos Hybrid Regularization, Electronic Transactions on Numerical Analysis, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=51142
(Accessed October 18, 2025)