Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Wannier functions using a discrete variable representation for optical lattices



Saurabh Paul, Eite Tiesinga


We propose a numerical method using the discrete variable representation (DVR) for constructing real-valued approximate Wannier functions localized in a unit cell for both symmetric and asymmetric periodic potentials. We apply these results to finding Wannier functions for ultracold atoms trapped in laser-generated optical lattices. Following Kivelson for a symmetric lattice with in version symmetry, we construct Wannier functions as eigen states of the position operators restricted to single-particle Bloch functions belonging to one or more bands. To ensure that the Wannier functions are real-valued, we numerically obtain the band structure and real-valued Eigen states using a uniform Fourier grid DVR. We then show by a comparison of tunneling energies, that the Wannier functions are accurate for both inversion symmetric and asymmetric potentials to better than ten significant digits when using double-precision arithmetic. The calculations are performed for an optical lattice with double-wells per unit cell with tunable asymmetry along the x axis and a single sinusoidal potential along the perpendicular directions. Localized functions at the two potential minima within each unit cell are similarly constructed, but using a superposition of single-particle solutions from the two lowest bands. We finally use these localized basis functions to determine the two-body interaction energies in the Bose-Hubbard (BH) model, and show the dependence of these energies on lattice asymmetry.
Physical Review A


ultracold atoms, optical lattices, Wannier functions, discrete variable representation
Created September 7, 2016, Updated February 27, 2018