Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Vertical Release of Hydrogen in a Partially Enclosed Compartment : Role of Wind and Buoyancy

Published

Author(s)

Kuldeep R. Prasad, William M. Pitts, Jiann C. Yang

Abstract

The natural and wind driven mixing and dispersion of hydrogen released in an accidental manner in a partially enclosed compartment with two vents is investigated using theoretical tools. A simple analytical model is constructed to predict the entrainment of air in a buoyant turbulent hydrogen plume and the properties of the resulting two layer stratification that drives the flow through the vents. Air flows in through vents below the position of neutral buoyancy and exits from vents above it. CFD simulations are conducted in a full scale geometry to confirm the physical phenomena and to compare with the analytical results. Analytical results are also compared with experimental data from a 1/4 scale two-car residential garage. The analytical model is used to understand the important physical processes involved during hydrogen release as a vertical plume, and dispersion in a compartment with vents at multiple levels, with and without a steady wind. Parametric studies are conducted to study the effect of hydrogen release rate on location of the interface and hydrogen volume fraction in the upper layer. Model results indicate that for a given hydrogen release rate, the hydrogen concentration in the upper layer reaches a maximum under opposed wind conditions, and that this maximum value can be as much as 70 % higher than the case with no wind effects. Results also indicate that blowing fresh air into the lower vent is an effective statetgy for reducing the flammable volume of hydrogen gases in a compartment, following an accidental release.
Citation
International Journal of Hydrogen Energy
Volume
36

Keywords

Hydrogen Release, Dispersion

Citation

Prasad, K. , Pitts, W. and Yang, J. (2011), Vertical Release of Hydrogen in a Partially Enclosed Compartment : Role of Wind and Buoyancy, International Journal of Hydrogen Energy, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=905660 (Accessed January 26, 2022)
Created January 25, 2011, Updated February 19, 2017