Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Unraveling the Stable Cathode Electrolyte Interface in all Solid-State Thin-Film Battery Operating at 5 V



Jamie Weaver, Fabian Linsenmann, Philip Rapp, Markus Trunk, Roman Gernh?user, Bastian M?rkisch, Hubert Gasteiger


Spinel-type LiNi0.5Mn1.5O4 (LNMO) is one of the most promising 5 V-class cathode materials for Li-ion batteries that can achieve high energy density and low production costs. However, in liquid electrolyte cells, the high voltage causes continuous cell degradation through the oxidative decomposition of carbonate-based liquid electrolytes. In contrast, some solid-state electrolytes have a wide electrochemical stability range and can withstand the required oxidative potential. In this work, a thin-film battery consisting of an LNMO cathode with a solid lithium phosphorus oxynitride (LiPON) electrolyte is tested and their interface before and after cycling is characterized. With Li metal as the anode, this system can deliver stable performance for 600 cycles with an average Coulombic efficiency >99%. Neutron depth profiling indicates a slight over lithiated layer at the interface prior to cycling, a result that is consistent with the excess charge capacity measured during the first cycle. Cryogenic electron microscopy further reveals intimate contact between LNMO and LiPON without noticeable structure and chemical composition evolution after extended cycling, demonstrating the superior stability of LiPON against a high voltage cathode. Consequently, design guidelines are proposed for interface engineering that can accelerate the commercialization of a high voltage cell with solid or liquid electrolytes.
Advanced Energy Materials


Li-ion batteries, neutron depth profiling, fast-charging


Weaver, J. , Linsenmann, F. , Rapp, P. , Trunk, M. , Gernh?user, R. , M?rkisch, B. and Gasteiger, H. (2022), Unraveling the Stable Cathode Electrolyte Interface in all Solid-State Thin-Film Battery Operating at 5 V, Advanced Energy Materials, [online],, (Accessed June 15, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created July 4, 2022, Updated November 21, 2022