Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Universal Relationships in Sooting Methane-Air Diffusion Flames



C. R. Kaplan, G P. Patnaik, K. Kailasanath


The laminar flamelet concept is based on the premise that scalar properties in laminar diffusion flames are nearly universal functions of mixture fraction. It has been well-tested and proven for temperature and the major species, however, few studies have addressed its applicability for minor species especially the radical species. In this study, we present a direct numerical simulation of an axisymmetric, laminar, methane-air diffusion flame to examine these universal relationships, including the major and minor chemical species, and the radical species. The numerical model solves the axisymmetric, time-dependent, reactive-flow Navier-Stokes equations coupled with sub-models for soot formation and radiation transport, and includes a detailed reaction mechanism for methane-air combustion. Quantitative comparisons with existing experimental data show a slightly wider computed flame compared to the experimental flame, however, the peak values and radial locations of temperature and soot volume fraction line up well with the experimental measurements. To study the universal relationships, scatter plots are made for temperature and the major and minor species throughout the entire flame and compared with existing experimental measurements. Excellent agreement is obtained between the computations and experiments for temperature and mole fractions of CH4, O2, OH, H20, 0, H, CO2 and N2, as a function of mixture fraction in the fuel lean, stoichiometric and fuel rich regions of the flame. The computations underpredict the concentration of H2 and CO in the fuel rich region, however, excellent agreement is obtained in the fuel lean and stoichiometric regions.
Combustion Science and Technology


Sooting diffusion flames, direct numerical simulations


Kaplan, C. , Patnaik, G. and Kailasanath, K. (1998), Universal Relationships in Sooting Methane-Air Diffusion Flames, Combustion Science and Technology, [online], (Accessed May 30, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created January 1, 1998, Updated June 2, 2021