Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Ultrasonic Power Output Measurement by Pulsed Radiation Pressure

Published

Author(s)

Steven E. Fick, Franklin R. Breckenridge

Abstract

Direct measurements of time-averaged spatially integrated output power radiated into reflectionless water loads can be made with high accuracy using techniques which exploit the radiation pressure exerted by sound on all objects in its path. With an absorptive target arranged to intercept the entirety of an ultrasound beam, total beam power can be determined as accurately as the radiation force induced on the target can be measured in isolation from confounding forces due to buoyancy, streaming, surface tension, and vibration. Pulse modulation of the incident ultrasound at a frequency well above those characteristics of confounding phenomena provides the desired isolation and other significant advantages in the operation of the radiation force balance (RFB) constructed in 1974. Equipped with purpose-built transducers and electronics, the RFB is adjusted to equate the radiation force and a counter force generated by an actuator calibrated against reference masses using direct current as the transfer variable. Improvements made during its one overhaul in 1988 have nearly halved its overall mea-surement uncertainty and extended the capabilities of the RFB to include measuring the output of ultrasonic systems with arbitrary pulse waveforms.
Citation
Journal of Research of the National Institute of Standards and Technology
Volume
101

Keywords

Medical ultrasonic, Ultrasonic transducer, Ultrasonics, Ultrasound power measurement

Citation

Fick, S. and Breckenridge, F. (1996), Ultrasonic Power Output Measurement by Pulsed Radiation Pressure, Journal of Research of the National Institute of Standards and Technology, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=820048 (Accessed February 25, 2024)
Created August 31, 1996, Updated October 12, 2021