NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Tuning the Relaxation of Nano-Patterned Polymer Films with Polymer-Grafted Nanoparticles: Observation of Entropy-Enthalpy Compensation
Published
Author(s)
Sonal Bhadauriya, Xiaoteng Wang, Jack F. Douglas, Praveen Pitliya, Jianan Zhang, Dharmaraj Raghavan, Michael R. Bockstaller, Christopher Stafford, Alamgir Karim
Abstract
Polymer films provide a versatile "plastic" material in which complex functional relief patterns can be imprinted with a resolution down to tens of nanometers. However, the utility of such patterned materials is limited by the tendency of imprinted patterns to relax back to their original flat film state. We show that we can greatly improve the thermal stability of these nano-patterned features in poly(methyl methacrylate) (PMMA) films by incorporating PMMA- grafted titanium dioxide nanoparticles (NPs) into the polymer matrix. The observed stabilization of the nanoimprinted patterns with increased grafted NP concentration is found to be associated with the slowing down of film relaxation dynamics upon adding NPs. Specifically, the activation energy and entropy of the slumping relaxation time is found to obey an entropy- enthalpy compensation (EEC) relationship with varying nanoparticles concentration, as found recently in the relaxation of strain-induced wrinkles in polymer films as the film thickness is varied.
Bhadauriya, S.
, Wang, X.
, Douglas, J.
, Pitliya, P.
, Zhang, J.
, Raghavan, D.
, Bockstaller, M.
, Stafford, C.
and Karim, A.
(2018),
Tuning the Relaxation of Nano-Patterned Polymer Films with Polymer-Grafted Nanoparticles: Observation of Entropy-Enthalpy Compensation, Nano Letters, [online], https://doi.org/10.1021/acs.nanolett.8b02514
(Accessed October 11, 2025)