Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Transferability Analysis of Data-Driven Additive Manufacturing Knowledge: A Case Study Between Powder Bed Fusion and Directed Energy Deposition

Published

Author(s)

Yan Lu

Abstract

Data-driven research in Additive Manufacturing (AM) has gained significant success in recent years. This has led to a plethora of scientific literature to emerge. The knowledge in these works consists of AM and Artificial Intelligence (AI) contexts that haven't been mined and formalized in an integrated way. Moreover, no tools or guidelines exist to support data-driven knowledge transfer from one context to another. As a result, data-driven solutions using specific AI techniques are being developed and validated only for specific AM process technologies. There is a potential to exploit the inherent similarities across various AM technologies and adapt the existing solutions from one process or problem to another using AI, such as Transfer Learning. We propose a three-step knowledge transferability analysis framework in AM to support data-driven AM knowledge transfer. As a prerequisite to transferability analysis, AM knowledge is featurized into identified knowledge components. The framework consists of pre-transfer, transfer, and post-transfer steps to accomplish knowledge transfer. A case study is conducted between flagship metal AM processes. Laser Powder Bed Fusion (LPBF) is the source of knowledge motivated by its relative matureness in applying AI over Directed Energy Deposition (DED), which drives the need for knowledge transfer as the less explored target process. We show successful transfer at different levels of the data-driven solution, including data representation, model architecture, and model parameters. The pipeline of AM knowledge transfer can be automated in the future to allow efficient cross-context or cross-process knowledge exchange.
Proceedings Title
ASME IDETC/CIE 2023
Conference Dates
August 20-23, 2023
Conference Location
Boston, MA, US
Conference Title
International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE)

Keywords

Data-driven Additive Manufacturing Knowledge, Knowledge Transferability Analysis, Knowledge Transfer, Machine Learning, Transfer Learning

Citation

Lu, Y. (2023), Transferability Analysis of Data-Driven Additive Manufacturing Knowledge: A Case Study Between Powder Bed Fusion and Directed Energy Deposition, ASME IDETC/CIE 2023, Boston, MA, US, [online], https://doi.org/10.1115/DETC2023-116458, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=936564 (Accessed April 23, 2024)
Created November 21, 2023, Updated March 6, 2024