Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Transcriptional and post-translational changes in the brain of mice deficient in cholesterol removal mediated by cytochrome P450 46A1 (CYP46A1)

Published

Author(s)

Natalia Mast, Joseph Lin, Kyle Anderson, Ingemar Bjorkhem, Irina A. Pikuleva

Abstract

Cytochrome P450 46A1 (CYP46A1) converts cholesterol to 24-hydroxycholesterol and thereby controls the major pathways of cholesterol removal from the brain. Cyp46a1-/- mice have a reduction in the rate of cholesterol biosynthesis in the brain and significant impairments of memory and learning. To gain insights into the mechanisms underlying Cyp46a1-/- phenotype, we used Cyp46a1-/- mice and quantified their brain sterol levels and the expression of the genes pertinent to cholesterol homeostasis. We also assessed the Cyp46a1-/- brain for protein phosphorylation and ubiquitination. The data obtained enable the following inferences. First, there is a compensatory upregulation in the Cyp46a1-/- brain of the pathways of cholesterol storage and CYP46A1-independent removal. Second, transcriptional regulation of the brain cholesterol biosynthesis via SREBPs is not likely the major mechanism responsible for a compensatory decrease in cholesterol biosynthesis in the Cyp46a1-/- brain. Third, some of the LXR target genes (Abca1) are paradoxically upregulated in the Cyp46a1-/- brain, possibly due to a reduced activation of the small GTPases RAB8, CDC42, and RAC as a result of a reduced phosphorylation of RAB3IP and PAK1. Fourth, the phosphorylation of many other proteins (a total of 146) was altered in the Cyp46a1-/- brain, including microtubule associated and neurofilament proteins (the MAP and NEF families) along with proteins of pertinence to synaptic vesicles and synaptic neurotransmission (e.g., SLCs, SHANKs, and BSN). Fifth, the extent of protein ubiquitination was only increased in the Cyp46a1-/- brain, and the affected proteins were of pertinence to ubiquitination (UBE2N), cognition (STX1B and ATP1A2), cytoskeleton function (TUBA1A and YWHAZ), and energy production (ATP1A2 and ALDOA). The present study demonstrates the diverse potential effects of CYP46A1 deficiency on brain functions and identifies important proteins that could be affected by this deficiency.
Citation
PLoS One

Citation

Mast, N. , Lin, J. , Anderson, K. , Bjorkhem, I. and Pikuleva, I. (2017), Transcriptional and post-translational changes in the brain of mice deficient in cholesterol removal mediated by cytochrome P450 46A1 (CYP46A1), PLoS One, [online], https://doi.org/10.1371/journal.pone.0187168, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=924176 (Accessed April 19, 2024)
Created October 26, 2017, Updated October 13, 2022