NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Traceable Characterization of Broadband Pulse Waveforms Suitable for Cryogenic Josephson Voltage Applications
Published
Author(s)
Alirio De Jesus Soares Boaventura, Dylan F. Williams, Gustavo Avolio, Paul D. Hale
Abstract
We characterize broadband pulse waveforms using a large signal network analyzer (LSNA) and a sampling-oscilloscope, both calibrated to the same reference plane and traceable to the NIST Electro-Optic Sampling System (EOS). The waveforms under test are passed through the LSNA test set and fed into the oscilloscope, allowing measurements to be carried out without disconnecting the measurement instruments, which reduces the measurement uncertainties. We calibrate the LSNA for operation with an external broadband pulse source and we correct the oscilloscope measurements for time-base distortion, impedance mismatch and the complex frequency response of the oscilloscopes sampler. We characterize several pulse waveforms and show good agreement between the LSNA and the oscilloscope measurements. The presented techniques will be applied in the characterization of cryogenic waveforms generated by NIST Josephson arbitrary waveform synthesizer (JAWS) systems.
Jesus, A.
, Williams, D.
, Avolio, G.
and Hale, P.
(2018),
Traceable Characterization of Broadband Pulse Waveforms Suitable for Cryogenic Josephson Voltage Applications, International Microwave Symposium, Philidelphia, PA, [online], https://doi.org/10.1109/MWSYM.2018.8439425
(Accessed October 9, 2025)